
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

A Preliminary Taxonomy of Techniques Used in Software
Fuzzing

Raunak Shakya
Tennessee Technological University

Cookeville, Tennessee
rshakya@students.tntech.edu

Akond Rahman
Tennessee Technological University

Cookeville, Tennessee
arahman@tntech.edu

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
fuzzing, scoping review, software security, taxonomy

ACM Reference Format:
Raunak Shakya and Akond Rahman. 2020. A Preliminary Taxonomy of
Techniques Used in Software Fuzzing. In Hot Topics in the Science of Security
Symposium (HotSoS ’20), April 7–8, 2020, Lawrence, KS, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3384217.3384219

1 INTRODUCTION
Software fuzzing is a testing technique, which generates erroneous
and random input to a software so that the software of interest
can be monitored for exceptions such as crashes [1]. Both in the
open source software (OSS) and proprietary domain, fuzzing has
been widely used to explore software vulnerabilities. For example,
information technology (IT) organizations such as Google 1 and
Microsoft 2 use software fuzzing as part of the software develop-
ment process. As of Jan 2019, GitHub hosts 2,915 OSS repositories
related to fuzzing 3.

Despite the popularity of fuzzing in software industry, practition-
ers might face challenges in implementing fuzzing due to lack of
understanding of what techniques are used to implement software
fuzzing. Such limitations can hinder discovery of vulnerabilities in
under-explored areas, such as scientific software [6] and microser-
vices [7]. A taxonomy of software fuzzing techniques can be helpful
for researchers who are relatively new to the domain of software
fuzzing and want to apply software fuzzing.

The goal of the paper is to help researchers in performing software
fuzzing by categorizing techniques that are used in software fuzzing
literature.

We answer the following research questions:
• RQ1: What techniques are used to perform software fuzzing?
• RQ2: How frequently do the identified software fuzzing techniques
appear in software fuzzing literature?

1https://chromium.googlesource.com/chromium/src/+/master/testing/libfuzzer/README.md
2https://www.microsoft.com/en-us/security-risk-detection/success-stories/
3https://github.com/search?q=fuzzing&type=Repositories

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7561-0/20/04.
https://doi.org/10.1145/3384217.3384219

Our contribution is a taxonomy of techniques reported in prior
literature related to software fuzzing.

2 METHODOLOGY
In this section we describe our methodology.

2.1 RQ1: Techniques used in Fuzzing
We conduct a scoping review of publications related to software
fuzzing to derive our taxonomy. Using a scoping review researchers
can synthesize results using a limited search [2]. According toMunn
et al. “Researchers may conduct scoping reviews instead of systematic
reviews where the purpose of the review is to identify knowledge
gaps, scope a body of literature, clarify concepts or to investigate
research conduct.”. Unlike a systematic literature review, a scoping
review is less comprehensive, and can be used as a precursor to
conduct a systematic literature review. Scoping review can be useful
to collect emerging evidence, which eventually can be used to
inform further research decisions [2]. For example, if a researcher is
inexperienced in the domain of software fuzzing, and wants to get
an understanding of existing topics such as practices and techniques
to implement fuzzing, then a scoping review could be useful to that
researcher of interest.

We conduct a scoping review by identifying established venues
where software fuzzing-related literature is published. We select
four conferences: International Conference on Software Engineer-
ing (ICSE), Symposium on Foundations of Software Engineering
(FSE), Computer and Communications Security (CCS), and USENIX
Security Symposium (USENIX). We select these conferences be-
cause (i) these conferences are rated as ‘flagship conference’ by
Computing Research & Education (CORE) 4, and (ii) these con-
ferences publish literature related to software fuzzing. Along with
ICSE, FSE, CCS, and USENIX, we also include conferences that focus
on testing namely, International Symposium on Software Testing
and Analysis (ISSTA) and International Conference on Software
Testing, Verification and Validation (ICST), as software fuzzing is a
sub-category of software testing [1]. We select conferences as they
tend to have a shorter review cycle and are more likely to include
recent advances in the field of interest [10]. We conduct the review
by applying the following steps:
• Step-1: We download all papers from 2009 to 2019 for each of the
four conferences.

• Step-2: We read the title, abstract, and keywords to determine if
the downloaded papers are related to fuzzing.

• Step-3: Upon completion of Step-2, one rater reads each collected
paper, and identifies topics discussed in the paper of interest

4http://www.core.edu.au/
1

https://doi.org/10.1145/3384217.3384219
https://doi.org/10.1145/3384217.3384219


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

HotSoS ’20, April 7–8, 2020, Lawrence, KS, USA Shakya et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

using qualitative analysis. For each paper the rater derives a
topic by identifying what technique is used by the authors to
conduct fuzzing for the software of interest.

• Step-4: Similar to Rahman and Williams [8], the rater uses card
sorting, a qualitative analysis technique to identify high-level
categories from the identified topics in Step-3. Card sorting is a
qualitative analysis technique to identify categories from natural
language text [11].

Upon completion of the above-mentioned steps, we derive a list
of categories that synthesizes the fuzzing-related topics discussed
in various papers published in the four conferences of interest.

2.2 RQ2: Frequency of Identified Techniques
We answer RQ2 using the metric ‘Publication (𝑥 )’. The metric ‘Pub-
lication (𝑥 )’ quantifies the proportion of publications that use tech-
nique 𝑥 . We calculate ‘Publication (𝑥)’ using by calculating the
proportion of publications that use technique 𝑥 .

3 RESULTS
We present the results of our research in this section.

3.1 Answer to RQ1
Following our methodology we collect 2,061 publications. By apply-
ing our filtering criteria (Step-2 in Section 2) we obtain 48 publica-
tions related to software fuzzing. Finally, using qualitative analysis
(Step-3 in Section 2) and card sorting (Step-4 in Section 2) we iden-
tify five topics, which we discuss below:

• Feature mining: This category related to software fuzzing in-
cludes publications thatmine features to conduct software fuzzing.
We observe researchers mine features from software source code,
software specification, operating system kernel calls, memory
access logs, protocol communication traffic, CPU usage logs, and
program state executions.

• Symbolic execution: This category includes publications that
use symbolic execution to conduct software fuzzing. Symbolic
execution is the practice of generating test cases where instead of
real values, artificial values are used for test case generation [5]. In
this manner, data is replaced by symbolic values with expression
sets.

• Search-based algorithms: This category includes publications
that use search-based algorithms to conduct software fuzzing.
Search-based algorithms are artificial intelligence techniques that
use stochastic techniques to explore multi-dimensional search
spaces [4].

• Formal methods: This category includes publications that use
formal methods to perform software fuzzing. Formal methods
are system design techniques where testing techniques such as
fuzzing are specified as mathematical equations [3].

• Taint analysis: This category includes publications that use
taint analysis to conduct software fuzzing. Taint analysis is a
technique that checks which variables can be modified by the
user input [9].

Table 1: Answer to RQ2: Frequency of Identified Topics

Topic Publication (%)
Feature mining 45.8

Symbolic execution 14.5
Search-based algorithms 14.5

Formal methods 16.7
Taint analysis 14.5

3.2 Answer to RQ2
We observe feature mining to be themost frequently used technique.
We provide the values for the ‘Publication’ metric in Table 1 for
each topic. A complete mapping of each of the 48 publications with
each identified topic is available online 5.

4 CONCLUSION
A review of existing literature related to software fuzzing can help
identify topics and inform researchers on what techniques can be
investigated and applied to identify vulnerabilities in unexplored
domains such as scientific software. We conduct a scoping review
with 48 publications published inwell-known academic venues such
as ICSE and CCS. We derive five techniques namely, feature mining,
symbolic execution, search-based algorithms, formal methods, and
taint analysis. We observe the most frequent technique to be feature
mining. Our taxonomymight be helpful for researchers in twoways:
(i) researchers can use our taxonomy to assess what techniques
can be used to identify undiscovered software vulnerabilities in
under-explored domains such as scientific software [6], and (ii)
derive a taxonomy that is comprehensive. We hope our publication
will garner further interest in the domain of software fuzzing.

REFERENCES
[1] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.
[2] Stuart Anderson, Pauline Allen, Stephen Peckham, and Nick Goodwin. 2008.

Asking the right questions: scoping studies in the commissioning of research
on the organisation and delivery of health services. Health research policy and
systems 6, 1 (2008), 7.

[3] Edmund M Clarke and Jeannette M Wing. 1996. Formal methods: State of the art
and future directions. ACM Computing Surveys (CSUR) 28, 4 (1996), 626–643.

[4] Mark Harman. 2007. The current state and future of search based software
engineering. In 2007 Future of Software Engineering. IEEE Computer Society,
342–357.

[5] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[6] E. S. Mesh and J. S. Hawker. 2013. Scientific software process improvement
decisions: A proposed research strategy. In 2013 5th International Workshop on
Software Engineering for Computational Science and Engineering (SE-CSE). 32–39.
https://doi.org/10.1109/SECSE.2013.6615097

[7] Sam Newman. 2015. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.".

[8] Akond Rahman and Laurie Williams. 2019. A Bird’s Eye View of Knowledge
Needs Related to Penetration Testing (HotSoS ’19). Association for Computing
Machinery, New York, NY, USA, Article Article 9, 2 pages. https://doi.org/10.
1145/3314058.3317294

[9] E. J. Schwartz, T. Avgerinos, and D. Brumley. 2010. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In 2010 IEEE Symposium on Security and Privacy. 317–331.
https://doi.org/10.1109/SP.2010.26

[10] Moshe Y Vardi. 2009. Conferences vs. journals in computing research. Commun.
ACM 52, 5 (2009), 5–5.

[11] T. Zimmermann. 2016. Card-sorting: From text to themes. In Perspectives on Data
Science for Software Engineering, Tim Menzies, Laurie Williams, and Thomas
Zimmermann (Eds.). Morgan Kaufmann, Boston, 137 – 141.

5http://tiny.cc/hotsos20-fuzz
2

https://doi.org/10.1109/SECSE.2013.6615097
https://doi.org/10.1145/3314058.3317294
https://doi.org/10.1145/3314058.3317294
https://doi.org/10.1109/SP.2010.26

	1 Introduction
	2 Methodology
	2.1 RQ1: Techniques used in Fuzzing
	2.2 RQ2: Frequency of Identified Techniques

	3 Results
	3.1 Answer to RQ1
	3.2 Answer to RQ2

	4 Conclusion
	References

